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ON THE MOTION OF A 24-HOUR SATELLITE

by
Peter Musen and Ann E, Bailie
Goddard Space Flight Center

SUMMARY

The theory and conditions for stability of a satellite
with a 24-hour period are given. Bohlin's resonance theory
was applied to obtain the solution. It is shown that the in-
tegrals of the problem can be represented in series form,
with respect to the small parameter w, which is propor-
tional to the mean motion of the critical argument in a non-
resonance case. Expressions for the period of libration and
the mean motion of the critical argument in the unstable
case are also given. A system of formulas is presented
which can be used to compute any particular case,
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ON THE MOTION OF A 24-HOUR SATELLITE™

by
Peter Musen and Ann E, Bailie
Goddard Space Flight Center

INTRODUCTION

In this paper the authors have investigated the stability conditions of a satellite with a period of
revolution approximately equal to one day. The criteria for stability are obtained in a form valid for
large inclinations—provided that the eighth power of the eccentricity is negligible.

THE DISTURBING FUNCTION

The disturbing function consists of a secular partproduced by the zonal harmonics k, and kg, and
a periodic part produced by the ellipticity of the earth's equator. The periodic disturbing function has

the form

. (xz_yz) . (1)

The x-axis is directed along the semi-major axis of the equator, and the z-axis is directed along the
axis of rotation of the earth. Substituting

1+ i 1 - i
-]; = —-Q(LSI cos (f +wt+(Q=-n't) +——2C°$cos(f+w-ﬂ+n't) ’
1 + cosi 1 - i
% = —L,C—‘ sin(f+w+0Q=-n't) - ——‘—‘;051 sin{f+w-0+n't) »
[ . ..
r = sin {f tw) sini

*This report has been published in substantially the same form in J. Geophys. Res. 67(3):1123-32, March 1962.



into Equation 1, we obtain

3 KAy, 3
F, = § 3 (1+cosi)2(§) cos (2f + 20+ 20~ 2n"t}
3 Ay, ay?
+ in?i (= (20-2n"t}
3 3 sin“ i (r) cos 2n
3 HA 3 2
t 33 (1-cosi)? (?) cos (2f+20~20+2n't) - (2)
a

Developing Equation 2 into a series in terms of the mean anomaly ! with coefficients developed in
powers of the eccentricity, and retaining the long period terms only, we deduce

Qpcos (21 +20+20-2n"t)
+ Q,cos (21 420-2n"t) + Q,cos (2]~ 2w+ 20-2n"t) (3)

where

3 KAy,
Q = B a: (1+cosi)2(1-7e2+ﬁe4-me°) ,

szzas

3 1 7
Q, ° 7 2 (l—cosi)z(ﬁ e‘+me5>'

If the mean motion of the satellite is such that it causes the satellite to remain above a particular
longitude of the earth for some time, the first term in Equation 3 is the most significant, and will be
treated in accordance with the theory of resonance. The last two terms will produce only small, long
period terms in the osculating elements.

The coefficient A,, is approximately of the same order as the coefficient of the fourth zonal har-
monic, and consequently, the secular part Fo of the disturbing function need not be developed beyond
the results established by Brouwer (Reference 1). Adding the termn’ypal1-e?)cos i, produced by the



rotation of the earth to Brouwer's development, we have

IR PRV O W ¥
Fo = 2L2+n[{+L3G3 —2t2

k517 9 Lt W 35 A
FLte \16 g7 T 16 s 1-10G2+ 3 Gt
RO 1sLS /18 H2 Ht
* L1o *ﬁEI-TG'z}'m

3L H? H* 15 L7 a2 a4
+g‘(§ 1"6&+96; T3 g7 1—262-75 ’

where L, G, and H are Delaunay variables

L =-|//,La, G = pa(l-ez) , H = pal“ez)cosi s
and k, and k, are the coefficients of the second and fourth zonal harmonics, respectively.

Considering the form of the main argument, it is more convenient to use the canonical set of
Poincare rather than that of Delaunay.

Thus
x, = yra = L, y, = l+tw+Q=n't, )
X, ~ }/E(l—}/-l_—ej)= L - G, and y, = —w, and \ ()
Xy =}/ﬁ(1— 1—e2cosi)= L -4, y, = - Q+n't. )
'The complete Hamiltonian is
F = F, +F,, 5)

‘but the disturbing function can be expreSsed more conveniently by means of thewa'uxiliary quantities



x,, €, and y, where ¢ = xz/xl sy ¥ = l—xs/xl. And the following relations exist:

L:xl.

G

T = 1-¢€,

H , Y

G - cosi = [=—¢"
and

e? = 2e - €2,

The following expressions were used in the actual computations:

N
F ! +
0 o 2).112
4
4k,
Py [— (1+3€ +6¢ +10e%) + 92 (3+15¢ +4552+10553)]
1
poki g3 3
+ x 10 32 (4+14€ +1952'2153) - 1572 (16 + 114¢ +459€2+137le3)
3
+ 35 7* (76 +790¢ + 4515¢2 +1875553)}
ulk,

3 15
B— 2+ 20¢ + 95¢2 + 315¢3) - v? {2 +24e + 1412 + 57363
< 10 i6 3
1

5
+ 16 v* (14 +196¢ +1365¢ 2 + 6545¢2) ] ,

4
- F‘*Azz 1 (36—180 +907e2 -152 J)+-l_ (36"144 +63c2 -89 3)
Q xg L% € +207¢ ) *ag7 € ThIen e
1 2 2 3
+ 96 7 (36 - 108¢ —45¢° ~134¢ ) !
4
“Ayn 3 3
@ 7 e [3"2 (36€ +38e? +85¢%) - 33 7 (36¢ +11°€’*269€3)] '
‘A
TR B! 1 1
& e [s—o (5e2+2¢%) - 35 7 (567 +7€%) + g5 5 (552”263)]



The first and second derivatives of F, and Q, with respect to x, can be obtained by using the expression

from which we obtain:

, #2 3/..L‘k2
Ff = o' -5+ [(2‘+ 7e + 1662 + 30¢3) + 2y (1+5¢ +15¢2 +35¢3) = y? (8 +45¢ +150¢? +385e3)]
1 X1
noky 3 3
T ®: (40 + 154¢ + 228¢2 - 273¢3) + 5 v (16 + 114¢ +459¢% + 1371¢3)
1
9 3
- 75 v? (64 +494€ + 2142¢? + 6855¢%) = g * (76 + 790¢ + 4515¢% + 18755¢3)
3 4 2 3
+ 35 7* (1064 +11850¢ +72240¢? + 318835¢°)
pSk

4 |15 15
11 [TG' (4*445 *22862*81963) 7Y (2+24e+ 14le2+57353)

Xy

45 35
- % 72 (8+104¢c + 65862 +2865¢%) - T »® (2 +28e +195¢? +935¢3)

35
+ 75 v* (28 +420¢ + 3120 + 15895e3)] i

2
[3 (6 +23¢ +57¢2 +115¢3) + 6y (8 +45¢ +150¢? +385¢%) - 9y* (12+75¢ +275e’+77053)}

6 2
wkyrg 9
*Th [—6 (188 + 696¢ + 5642 - 4653¢3) + 5 v (128 +088¢ +4284¢? +13710¢°)
1

bt

3
2 (340 + 2668¢ + 11550¢ % + 36085¢%) - 7 »* (1064 + 11850¢ +72240¢? + 318835¢> )

oo| o

+ 75 »* (532+6320¢ + 40936¢* + 19130153)]

]
1k, 45 4
T [—8— (6 + 72¢ + 400€? + 1529¢3) + —2§ y (8 +104e +658¢2 + 2865¢ 3 )

15
- 7 72 (142 +1988¢ + 13440¢ ? + 62215¢°) - 33 3 (28 + 420€ + 3120¢? + 15895¢)

525
+ 5 7t (14 +224¢ + 17687 + 953753)} ;



- # A 2 3 3 2 3
Q' = - 5138 (72-486€+765& - 595¢ ) +jy(6-296+176 - 2le¢ )

1
+ zg »? (144 - 486¢ —22562—73763)]

4
# Ay 1
Q = ¢ s [;g (288 - 2844¢ +6273¢ 2 - 5194€3) + 55 ¥ (720 - 4212¢ + 3285¢? - 3421¢3)

1
+ 1g »* (432 -1620¢ - 825¢2 - 294853)}

If only the secular and the first, most important, periodic terms of the disturbing function are
retained, we have:

F = FO + QD cos 2yl . (6)

The libration points and the points lying on the intersection of two branches of the separatrix are
determined from the equations

OF _ Iy 9%

Ix, - 9x, *Ix; °Os Wy,
and

aF  _ _

W'l = - 20Q,sin2y,

if the values of x, and x, are fixed. From Equation 6 we deduce that

LA :

9%, + ox, 0 (7)

fory, = 0, 7, (8)

Fo R

ax, ax, (9)
T 3

for y, 5,7

(10)

The valuesy = n/2, 3n/2 reduce thedisturbing function (Equation 5) to a minimum. Consequently,
they correspond to the stability position and determine the libration points. The sety, = 0,n gives



the points on the separatrix and corresponds to unstable positions. For satellites moving in the
equatorial plane the stable positions are on the equator's minor axis, and the unstable positions are
on the major axis (Reference 2). It is convenient in the complete problem, as defined by Equation 5,
to retain the development around the characteristic points defined by Equations 7 through 10, and to
write the disturbing function in the form

F = Ry, +R
where
Ry = Fog = Q>
R, = 2Q,cos?y, + Q,cos (2y1+2y2) + Q, cos (2y1+4y2)
for the stable case, and
R, = Fg +Qp (11)
R, = - 2Q,sin?y, + Q, cos (2y1+2y2) + Q, cos (2y1+4y2)

(12)

for the unstable case.

The canonical transformation (Equation 4) removes the time and the argument y, from the dis-
turbing function. Consequently, this problem contains the energy integral

RO + Rl = =C (13)

and the integral

is constant.

THE STABLE CASE

By substituting x, = HS/ayl, and x, = aS/ay2 into Equation 13, we transform it into a Hamilton-
Jacobi partial differential equation. Letting

S = So+S, (vq) +8, (vi. o) Sy (v, ¥a)



C = Cp+#C, +C, +Cyt =vn

and

Sy T oayy; tayy, tagy,

where a, and o, can be considered as two constants of integration. We replace the partial differential
Equation 13 by the system of Bohlin's equations (Reference 3). These may be deduced by developing
the left-hand side of Equation 13 into a Taylor's series about a,, a, o;:

R, (a;, aj as) = =Gy (14)

3, as, \2 as,
Wo1 Jy, t 2 Va0 \ 9y, * Wi Gy, T 2Q, cos?y,; + Q; cos (2y, + 2y,) + Q; cos (2v,+4y,) = 0> (15)

3
_—683 6_5_1 EZ is_i a_s_’ 1 .as_‘
Wor 3y, t \¥10 *¥2 Ty, /3y, * 3y, 9y, Yu * 6 Yw\dy,

5,

+[ 2Q, coszyl + Q, cos (2yl +2y2) + Q, cos (2y1+4y2):] ¥, = =-C, (16)
where
aiﬂRo (al, &g a3)
Wi T 60.1‘ 3(12"
and
, 2Q, (al. Gy a3)
Q) = da

Equation 14 can be considered as a defining equation for C, .
Imposing on our solution an additional condition - that no secular term with respect toy, is con-

tained in S,, S,, S;, . . . . ., but only in S,— we deduce from Equations 14, 15, and 16 that

Sy T ¢ (vy)

1
S, = ¢, (yl) - 5‘;0_1 sin (2y1+2yz) - 4-“’0—15'1“ (2y1+4y2) ,



and also

1 L 7 —

T W 47t Wy & * 2pcos’y; = 0 (17)
' ’ 1 '3 | ' 2 =

by (Wio TWao B1) & Wyo b1 7 * 26, Qg cosTy, T T ¢ - (18)

From Equation 17, we have the standard first approximation

¢1’ = =-wt A, (19)
where
Y10
VT
and
A = i]/: _ ﬁ 2 .
v Wy 0% 2 (20)
If
4Q,
> ,
gt (21)

then cosy, oscillates between the limits -(w/2) (]/—_WN/QO),+ (w/z) (]/—wm/qo). This condition (Equation 21)
can be written in the form:

(Fy' =Qy )* - 4Q (Fg" =0, ) < 0> (22)

(where, in this case, the primes represent differentiation with respect to a,), together with the

condition

(Fo' - Q) )2

2
cos“y, < 4QO (Fo"-Qon

which, for a certain moment of time, must be fulfilled for the motion to be stable. By eliminating ¢/
and cos?y, from Equation 18 by means of Equations 19 and 20, we can write an expression for ¢, :

C o (ive 1% e %N e Q) 3l (1Y 100 L
¢y T Bug ~ 20, /M T2\, T /M T2 g TR TR T T By T 270 )Y



The divisor A in the last term may become zero, Therefore, to remove a source of possible dis-

continuity, we set

1 ¥ao 1 Qo'
(o] = —_—— = 3,
1 (6 W20 Q0>w

(23)

and ¢, becomes a polynomial in A which, taking Equation 20 into account, can also be written as

oo .2 %0 f1¥0 W) Q% (1¥e %) % . (M0
#2 R 3wy Qo) %20 3wy Qp ) Wao °° ZET) w20
Setting
2 V3o 1% )\ Q
w K Wag 3 Wao Q, W a6
7 2
1/{ %30 Q
A - 2= __Y9 1 2 s
[W + 2 (W20 Qo)wjl
4Q, 1/ %30 Qol) ?
A® = — 1 +5— - 5 |w >0
Vo {: 2(“’20 Q /"
Q w Q’
A® = °<_1__3‘l__l o1,
W \O Wy 2 Q
Q;
R
Q,
A® = o,
4wy,
A b
= 1
@, C AP
a9c  _
da Ty

10

Q'

%

o

(24)

(25)

(26)

(27)

(28)

(29)

(30)



we obtain the Hamiltonian function S with its integrals in the form:

S

and

X2

X3

da

- (al+A(l))Y1 ta,yytagyyt _[ ﬁ@) - A® cos’y, dy,

+ A® sin2y, + A® sin (2y, +2y,) + A® sin (v, +4y,)

_ 95 _
= E = (a,+A(l)) + {A(D—A(3) coszy1
+ 2A® cos 2y, + 2A® cos (2y, +2y,) + 2A© cos (2v, *4v,)
_ 98 _
=y, T %t 2A® cos (2y, + 2y, ) + 4A® cos (2v, +4y,)
_ 95 _
T3y, as ’

dy,

}/A(z) ~ A® cos?y,

n, t¥p, = (1+A1(‘)) it MIJ’

L A®
t7 A(J)j. YA® - A® cos?y, dy,

+ Al“) sin2y, + Al(s) sin <2y1 + 2Y2) + A® sin (2y1 t 4y2)

dy,

YA® - A® cos?y,

- L
n, t +5, Az()y1+y2iM2J

A®
1
—ﬁjm - A® cos?y, dy,

+ A2(4) sin 2y + Az(s)Si"(le +2y2) * Az(s) sin(2y1 +4y2) '

dy,

3
J ]/A(z) - A® coszyl

n, t+p8, = APy +y; M

A®
173 2
s 3 3 | AT T ATy ay,

tA®sin2y, + AP sin (2y, +2y,) * AL® sin (2y, *+ 4y,) -

(31)

(32)

(33)

(34)

(35)

11



In this representation the terms containing y, in the argument are of the first order with respect
to the paramater k,. In addition, these terms contain even powers of the eccentricity as a factor and
consequently, will be small from the start; the computation of the second order term in k, with the
argument y, shows that it can be neglected, All quantities can be considered as functions of n  t +5,,
(i = 1,2,3) but, of course, only y, and y, will have a secular term, sincey, does not possess any
such term,

It is not difficult to continue the process of computing s, if necessary. However, taking present
day knowledge of the numerical values of geodetic parameters into consideration, it was found that
even the development of Equations 31 through 35 proved to be accurate — from the practical point of
view — overly accurate. In this solution R, was originally considered to be of the second order with
respect to w,,. It must be pointed out that this classification is purely formalistic, and loses its
significance after the development is completed, The important characteristic of the solution is that
it can be developed into a series in w, with the coefficients depending upon «,, a,, a,. The develop-
ment is not made in powers ofm as might be expected. This feature was observed initially by Izsak
(Reference 3) in his solution of the critical inclination problem,

The method presented here does not introduce the small divisor A in the determination of ¢, which
appears in the expression for S_:

s, = ¢, (v,) + trigonometric terms in y, andy,.

n

Every ¢ ' will be a polynomial inA, if the constant of energy C is decomposed properly, to remove
the poles with respect toA. This can be easily shown by applying the "from n to n+1 proof," since
the equation for the determination of ¢  has the form:

¢ wyy A+ P, (cpl' A A A cos’yl) = C, -1
where P_ is a polynomial in ¢ ,¢; , =+, ¢, cos?y,. The elimination ofcos?y,, by means of
Equation 17 and the proper determination of C__; , will lead to the representation of ¢ in polynomial
form, providing it has been shown that ¢, ¢, ,*** , ¢, are polynomials inA, Eliminating higher

powers of Ain favor of cos?y,, we deduce that

¢! = o, (cos’yl) + AB, (COSZyl) ’

n

where a, and 5, are polynomials incos?y, with polynomial coefficients in w. This result is similar to
that obtained by Izsak (Reference 4) for the critical inclination problem. For the partial derivative

of S, with respect toy, we have

9y, = 19 (yl’ ¥a) * AT® (Yir ¥a) o

where T, and T,V are trigonometric polynomials in 2y, and 2y, with polynomial coefficients inw.
When integrated, this has been found to be purely trigonometrical with respect to y,.

12



In the stable case y, will have a long period oscillation about #/2 or 3n/2. It is also of interest
to know the approximate period of this deviation in longitude. From Equations 23 through 29, we have

AD = -1-F w0 W) (36)
Wao Q'
= - —_— 2 3]
MO E e [wzo sG] w0 b (37
AI(J)
A® = 0 (w) (38)
_ 1 Y30 Q)
s ‘W"f[ﬁ*o—o}wz*”ﬂ' (39)
ML
AD Q0 ¥ (40)

Neglecting small long-period terms, we can write, from Equation 32, the expression for the period of

libration T:

oo = 2 (10 a0) [arccon () - arccos (2]

-1
M1 Jrcos (1/k) dyl
2 2
]/A@ cos™ -1/ ]/1 + k2 cos?y,
AP cos”  (1/K)
vy AP J I/l - k?cos?y, dy,
c

os”T-1/%)

t 2

where
2 A(s) 4Qo
2 - 5
A® woWo
Setting
kcosy, = sinu,

13



we have

cos (1/k) /2
dy, _ 2 du 2 (_1)
Rl = T K%

- 2
]/1 k cos"'y1 1 -—Lsinzu
Jo k2

cos-l(‘l/k)
and

cos 1(1/k) /2

ooty e, - g | AR - - [ () ()
2

-1 1 -7 sin‘u
cos” (-1/k) 0 k

where K(1/k) and E(1/k) are the standard elliptic integrals of the first and second kinds having
the modulus 1/k. In terms of the new variables,

M A®
n, T = 2 (1 + AI(D) [2 arc cos (‘é‘) - 77] - %[; + %’ﬁ ]/A(Z):] K (ki)

©)]
- ypE s (s () -k ()] (a)

Substituting Equations 36 through 40 into Equation 41 yields:
. 2V¥3 L (1 4 [ Q 1 w?
nT = -345— w 2cos (I)-ﬂ "R \lTg v K(g)+0 /)

Equations 14 and 23 give the expression for C = C, +C,, from which

_ 9oC _ 1 Y30 Q'
n, —-aa—l = T Wy W l-m w—2;+3vo-w
and
1 1
K (E) 2 Y30 [ 1 4K (;) 3 140 g w
T = + —— = | 2cos™? - }_ (___) _ 1 ¥a w)
V3, t3 Wi cos (TE') ” Kwy [1 2%, O, 2 ) +0 (T{) (42)

In order to find the period in the vicinity of the libration point, we expand Equation 42 in powers
“of 1/k. Since wapproaches zero as the libration becomes smaller,

1 w /Y .
k= t2)q "0

14



and for small values of 14k ,

and

Consequently we deduce that

e —T ) - E_E’_+£__1_fi°_+3Q°' +0(_1_>.
Qo W20 V13T Wy, Qo 2%,0 \ W20 8 k2

UNSTABLE MOTION

—~
Jom
S
I
ol
1
e
1
O\l»—A
"l
+

If the condition (Equation 22) is not satisfied, the motion is unstable and the Hamiltonian function

takes the form

with R,and R, defined by Equations 11 and 12, Performing operations similar to the previous ones,

we find that

S = (a.l +B(‘)) ¥,

ta,y, tayy * IVB“’ + B® sin?y, dy,

+ B® sin2y, + B® sin(2y, +2y,) + B® sin (2v, +4y,) -

where

2
D = oy o223 30 _ "0} o
B® = T3V (?w Q, )wzo '

’ 2
1 ¥30 Qo>
@ = 2 | == e = ,
B W[l"’z(wzo Qow

\ 4Q, 1 /%30 Q, 2
@ = — {32 _ ,
B Vo 1+ ] (wzo _Q: w >0

B® = <%

(43)

(44)

(45)

15



B(s) = - 2w01 ’
and
Q,
B(‘) = -
4wy,

Despite the similarity between some A's and B's, they are not identical since different values of
R, are used in each case, The constant of energy has the same analytical form as in the stable case:

- 1%0 1 Q 3
C = R (), fag)v (46)

Thus we have, as in the previous case,

x, = a, +B® + YB® + B® sin?y, + 2B® cos 2y, + 2B® cos (2y, +2y,) + 2B® cos (2y, tay,) -
X, = a, + 2B® cos (2yl + 2y2) + 4B(® cos (2y1 +4y2) ’
b 4 = a

and, putting

. F): 10
B,® 5a,
ac
aa - nx ’
1 Bj(3)
= ~|p@®-p3 2],
N 2 \B" "BY 35

we have, designating by the additive constants of integration By Byy Byt

731(3)

dyl J‘ -
e }/B(z) + B sin y, dy,

n,t+8 = (1+BM)y +N +
1 1 ( 1 ) 1 1 }/B(z) +B(3)sin2yl

M\f [

+ Bl(4) sin 2yl + BI(S) sin (2y1 + 2y2) + B‘(G) Sin(zyx + 4y2) H (47)

16



dy, 1 B¥
n,t + Bz = B;a) vy ty, + Nz t2 BO® }/3(2) + B® Sinzyl dyl
}/3(2) + B® sin’yl B
+ B® sin2y, + B,® sin (2y, +2y,) + B® sin (2y, +4y,) °
3
. dyl 1 BS() 3 .2
ngt + 8, = B3()Y1+y3+N3 *2 3o }/B@)+B()sln Vi
}/B(’) + B® sin?y, B

+ 33(4) sin2y, + 33(5) sin (zy1 + 2y2) + [33(6) sin (2y1 + 4y2) .
In the unstable case

2 in2
B@ + B® sin?y, >0 (48)

and the square root of Equation 47 (and its reciprocal) may be developed into a Fourier series in
2y,; the argument y K will possess a real secular term, which is absent in the stable case. The

coefficient of y, in the right side of Equation 46 is

2N /2 dy BO a2
P = 1+B®+ — = + %%f YB® + B® sin?y, dy,
0 }/B(z) + B® gin? ¥, B 0 (49)
Substituting in the integrand
_ 7
y, = 72°¢>
and
B®
k? = o
B® + BO®
we reduce the integrals to the normal form and Equation 49 becomes:
2KN, E B®
P = 1+B®+ —————+—.—= {/B® + B, (50)

nyB® + B® 7 B®

17



where

and

E(k}

/2
J }/l-k’sinzdqub'

0

Taking Equations 43, 44, and 45 into account, we further deduce that

1 VY30 ‘
B® = -1-3wg—+0w), (51)
Y30 Q’
Bl(z) = 2w +(W -3 Q—D)wz + O(Ws) , (52)
Bxa)
W = Oflw) ¢ (53)
and
~ 1 %30 Q
Mot wra (E -3 Q—o)wz * o) (54)
It follows from Equations 50 through 54, neglecting the terms of the second order in w, that:
P = - l E + %K 1- Q(]'
3 VW, ™ Q) (55)
~here k' is the complementary modulus, k2+k‘? = 1, and
K= w - l(wao Qo')
= ¥ =2 -2l
YB@ + BO 2\ %2 Q,
From Equation 46, neglecting terms of the third order, we have
- ¢ _ 1/ %30 Q' 2
Ny T Fa, T T Wt Zlw, t3g, /Y (56)

18



Using Equations 54 and 55, we can compute the mean motion v, = n,/P of the argument y, with an
accuracy up to the terms of the second order inw, The value of v, denotes the speed with which the
satellite will depart from its original position over the earth's surface during the course of time.

CONCLUSION

The theory of motion of a 24-hour satellite under the influence of the ellipticity of earth's
equator has been developed using a resonance theory. The expressions for the elements of motion
can be represented in the form of a series with respect to the parameter w, which would be closely
associated with the mean motion of the main criticalargument (n-n’)t +Q+w in a nonresonance case.
Canonical elements and the Hamilton-Jacobi partial differential equations were used to solve the
problem. This method of solution was chosen because of its flexibility with respect to the form of the
integration constants which are adjusted so as to remove small divisors from the solution.

The conditions are established for stable and unstable types of motion; no severe restrictionsare
imposed on the values of inclination or eccentricity. The formulas are developed to the point where a
numerical development can be easily accomplished for any particular case. Using this method, an
extension of Hori's critical inclination theory (Reference 5) can be easily obtained. The method
described herein can also be applied to a more general case. If the ratio of mean motions is
n/n' = 1/p, and not n/n' = 1 as in our case, the theory given here can be easily extended by using the
set of canonical variables:

xl=—ga‘! ¥, = pl+Q+aw-n't.
- 1 3 -
X, T yEE 5_}/1_9 : Yy, T T wo

1
X, = ﬂza(‘ﬁ—]/l-e!cosi)' vy T -Q+n't -

Comparing this theory with observations can help to better determine the coefficient of ellipticity
of the earth's equator,
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